Adapt Framework Concept

Adapt Learning: Adapt Framework Concept and Vision

Document control

document

Abstract: Describes the concept of the Adapt Framework

Author: Sven Laux, Daryl Hedley, Version: 1.0 Date: 27 /11/2013
Paul Welch

Summary of Versions Date Description

Changes: 1.0 27 /11/2013 First version of Adapt Framework concept

Page 1



DOCUMENT CONTROL

Adapt Framework Concept

PURPOSE OF DOCUMENT

WHAT IS THE ADAPT FRAMEWORK?

CONCEPT OVERVIEW DIAGRAM

EXPLANATION

Page 2



Adapt Framework Concept

Purpose of document

The purpose of this document is to outline the vision and concept of the Adapt Learning Framework. It
contains a concept diagram, similar of a mind map of the key functionality, components and elements of the
underlying code framework, which make up the programming logic of the e-learning course.

This document is not a specification document. It is intended to help the project team and wider community
understand the full product we are aiming for. As such, the document will therefore set the context in
discussions about requirements, system architecture, specification etc.

The document is also intended to help newcomers to the project to get an overview.

What is the Adapt Framework?

The Adapt Framework is a generic, modular and reusable codebase for developing single version, responsive
design e-learning courses. The codebase forms the program logic, which runs as part of the e-learning course
in the Learners browser. It is open source and designed with developers in mind.

Anyone with a desire or need to create learning can use Adapt. The framework is aimed at developers and
they can work directly with it. An authoring tool (Adapt Authoring Tool) exists separately as part of the same
open source project, which is aimed at non-technical end users.

The Adapt Framework was built for e-learning and has core features like tracking completion status and
assessments. E-learning courses, which are built on the Adapt Framework can display across multiple device
types. The content responds (adapts) to the users screen size.

The Adapt Framework is powered by JSON data. Depending on what the JSON attributes are set to, the
Adapt Framework will render different types of layouts and components.

Page 3



Adapt Framework Concept

Concept overview diagram

ACC@K';b i

Page 4



Explanation

Adapt Framework Concept

ID

Node title

Description

Adapt Framework

The Adapt Framework is the program logic of a published e-learning course,
which runs in the browser. It is the generic code, which makes up the output of
the authoring tool.

Look & Feel

The appearance of the e-learning course, which includes branding, art direction
themes etc.

Themes

A theme is the generic look and feel. It captures display settings, which apply
throughout the course. This includes CSS styles, icons, base colours and
background images. Components and extensions inherit the base colours and
generic icons but have to define their own layouts.

Responsive

Responsive design is at the heart of the Adapt Framework and enables single
version output, which adapts according to the device resolution and capabilities.
We have implemented responsiveness is by defining pixel-width breakpoints
(see below). The Adapt Framework is fully responsive, meaning that as the
window width increases or decreases, the content adjusts automatically. If the
width (in pixels) goes beyond a breakpoint, different styles and classes are
applied to the content.

Breakpoints

Breakpoints are defined in numbers of pixels. They determine points in the
width of the screen, at which different styles are applied to the on-screen
content. There are three major breakpoints, which roughly reflect the three m
main device types (smartphone, tablet and laptop/desktop).

Settings

Settings reflect the configuration options of the generic codebase.

Language

The language is one of the main configuration settings. Courses can be packaged
to contain multiple languages within a single course package. The language
setting determines the default language to be used and whether to display the
option of choosing the language to the end learner.

Fonts & symbols

Fonts and symbols are a consideration as special characters or particular fonts
are not ‘websafe’ and may have to be shipped with course. This node is in the
concept diagram to remind us of particular requirements when working with
languages other than English.

Right-to-left Depending on the language, the reading order may be right to left, e.g. in the
case of Hebrew. This node is in the concept diagram to remind us of particular
requirements when working with languages other than English.

Assets ‘Assets’ refers mainly to content images or animations used in the course. In

most cases, the assets will be language independent. However, on occasion
there may be differences in the imagery used for different languages, e.g. where
a graphic contains text or where different graphics are used when localizing (as
opposed to simply translating) a course.

Page 5




Adapt Framework Concept

Media files

Media files are also assets but refer more specifically to audio / video files,
which are used in the course. Media files are more likely to be language
dependent, especially when they contain an audio track.

Preferences

Preferences refer to settings the learner can change in order to adjust the
display and behavior of the course. This includes audio/video and accessibility
related preferences (such as high contrast look & feel) in particular.

Audio / video
preferences

Audio/video preferences enable learners to change the default behavior of
audio / video assets for a course. This includes enabling/disabling audio, setting
the volume and deciding whether a written transcript for audio should be
displayed alongside (or instead of) the media file.

Accessibility

Accessibility settings/preferences are intended to help users with visual or
motor impairments access the course.

Transcript

A transcript is the content of the audio track (in particular) expressed as on-
screen text. It enables delivery of the content to learners who are not able to
play back or hear / understand the audio track.

Extensions

Extensions are a type of plug-in. The purpose of extensions is to enable
developers to extend the functionality of the course without having to modify
core code. Extensions contain functionality, which is not directly embedded in
the article / block / component structure. For example, a course glossary and
the ‘Tutor’ to deliver feedback.

Learner Support

Learner support is functionality that provides additional information, outside of
the core content presented within the Adapt pages. Examples might be glossary,
resources, page level progress and a search feature.

Search The search functionality enables learners to search the course for specific
content.
Resources Resources are additional and related content items, such as reference materials

and background reading. They may exist as part of the course or in
downloadable format (e.g. as PDF documents).

How-to guides

Glossary

Reference section showing terms used in the course and their descriptions.

Notifications

Notification is a messaging center that allows Adapt to flag information to the
learner. In addition, the message can also provide choices which are linked to
particular events (for example, on selection of the menu button ‘There are still
unfinished components on this page, are you sure you want to return to the
menu. <YES> <NO> )

Menus

A mechanism for selecting a sub menu or page within a course.

Navigation

The process of navigating within and between the various pages of an Adapt
course.

Persistent Navbar

The bar at the top of the page, which contains access to the sub menu feature

Page 6




Adapt Framework Concept

(including ‘Back’ and the learner support features) and the page level progress.

Locking

The ability to limit access to pages or specific blocks within a page until an event
has occurred.

Deep scrolling

The most typical layouts are likely to be based around a deep scrolling page
where blocks stacked one on top of the other.

Blockslider

Block slider allows for the presentation of content within a lateral scrolling
layout with blocks placed side by side, rather than one on top of the other as in
deep scrolling.

Course structure

The arrangement of the various pages in a hierarchy, which makes up a course.

Page

A page is a structure, which consists of at least one article and a single block
which houses one spanned or two single components. A page can contain as
many articles as needed.

Articles

An article is the next largest structure after a page. The layout of the blocks
within a page can change but not within a single article. For example a page,
which begins with a deep scrolling layout and which then moves into block slider
must occur within 2 articles. An article has a title and body (of initial text) and a
background graphic.

In addition, some functionality is applied to articles and not pages. For example,
you will have an assessment article, not an assessment page.

Blocks

Blocks can be thought of as containers for components. In fixed layout eLearning
a block would be analogous to a page. Blocks house either one single width
component or two single width components. A block also has a title and body
(of initial text) and a background graphic.

In larger sized screens a block will typically display 2 components side by side,
on smaller, smartphone sized screens, the components are placed one on top of
the other.

Components

Components sit within blocks and are used to present the course content. A
component contains a title, a body (initial text) and a widget / piece of
interactivity. This widget element is what differentiates the various component
types.

Any two single width components can be combined within a block. A spanned
component will always have a single width full back to ensure it can be rendered
on a smartphone-sized screen.

Triggered
component

A component which is triggered via the selection of a link or icon that sits on the
background graphic for the block, rather than one which is already displayed
upon page load.

Presentation types

Components, which focus on presenting information.

Blank

Creates single or spanned space on the page creating a window through to the
background imagery.

Page 7




Adapt Framework Concept

Text

A single or spanned component. This is the only ‘proper’ component (see blank)
that doesn’t have a widget consisting of a title and body. If spanned the same
text will be ‘redrawn’ into a single sized component.

Graphic

A single or spanned component. If spanned the same image will scale down and
be ‘redrawn’ into a single sized component (Adapt doesn’t load a smaller sized
image).

Accordion

A single width component, which consists of a stack of clickable items.

Each item has a heading which, once selected, expands to reveal the
accompanying items text. There is no limit on the number of items within an
accordion but we’d recommend no more than six.

There are no graphics within each items display text area.

Narrative

A spanned component with a single width component fall-back. The learner can
work through a sequence of images with an accompanying piece of display text
via a forward icon (a back icon, post item one is also available). When the final
item in the sequence is reached the default behaviour is to disable the forward
arrow, not to take the learner back to the beginning of the sequence.

Each display graphic and text field is accompanied by a title.

The single spanned fall-back of narrative makes use of a clickable strapline
which, when selected, triggers the display of the accompanying item text

On mobile phones the display text is presented in a full screen pop-up, which
needs to be closed before the learner can continue.

Hot Graphic

A spanned component containing an interactive graphic (an image with clickable
regions whose coordinates are set via the JSON).

When one of the items on the hot graphic is selected a window opens over the
image containing some associated text and image that is relevant to the hot
spot item selected.

The learner has the option of closing this window and choosing another item on
the hot graphic or using discrete forward and backward navigation buttons
within the display window to work through all the display items in order (the
order will depend on the JSON structure).

For single spanned full-back, there is no mechanism for selecting items off the
hot graphic. Instead the display window functions as a single span narrative.

Questions

Components, which focus on eliciting a measurable response from the learner.
Questions can be used in formative and summative assessments and can
contribute to an overall score for the e-learning course.

MCQ

A single width multiple choice component. The body is used to display the
guestion stem and the widget the options. One or more of these options can be
marked as correct.

Feedback, delivered by tutor feature, can be either option specific or banded as
correct, partially or incorrect. Any ‘number of attempts’ are possible but
recommend two as standard. The tutor window must be closed to reattempt

Page 8




Adapt Framework Concept

the question.

Indication of performance occurs via the placement of ticks and/or crosses.
These icons are only located on the options the user has selected.

If multiple attempts are possible, then the ‘Submit’ button is replaced by ‘Reset’
once the answer is submitted. Selecting this button removes markings and
resets the question, allowing for a further attempt.

Once the final attempt is made the reset button is replaced with the ‘View
Model Answer’. Selecting this button allows the learner to toggle between their
own answer and the perfect answer. In model answer ticks and crosses are
present on every option.

There is no maximum number of question options but best practice would
indicate a maximum of 5 or 6.

Graphical MCQ

A spanned or single width component. Very similar to MCQ in terms of
functionality, the only difference being the learner selects one or more icons on
an image rather than one or more options from a list.

Matching

A single width component that provides the learner with a stem presented via
the component body, and then a series of statements. Each statement has an
associated drop down which contains a series of options, one of which will be
correct.

All option drop downs require the correct option to be selected to trigger the
correct feedback. There is also partially correct and incorrect feedback available.

As with MCQ component the option marking, ‘Reset’ and ‘Model answer’
functionality is included.

There is no limit to number of statements/drop downs or the number of options
within the list but best practice would dictate no more than 5 or 6 for each.

Text Input

A single spanned component.

As per matching, the question stem is presented via the component body but
instead of statements with accompanying drop down lists, the learner is
expected to enter their answers via a free text entry field.

Each free text entry fields entered answer is checked against a string and if
present then it’s marked as correct. All free text entry fields need to be matched
as correct to mark the component as correct. As with all questions, partial and
incorrect feedback options are available. Number of attempts and number of
guestion options are not limited other than by best practice.

The option marking, reset, model answer and number of attempts are also
standard and as described above.

Assessment

An assessment is a sequence of questions, contained within an article, which can
generate a score upon completion.

Score

The score within an assessment is the number of questions answered correctly
and displayed as a % or as x (correct answers) out of y (total number of
guestions).

Page 9




Adapt Framework Concept

Feedback Feedback is provided (via the ‘tutor’; see below) for question components as
either correct/partially correct/incorrect. Alternatively you can also present
feedback specific to the option chosen.

Tutor Tutor is the mechanism used to automatically present feedback upon the

attempting of a question component.

Questionbank

A bank is a collection of questions that can then be used, with randomization, to
create an element of variability between different sittings of the same
assessment. There is, in theory at least, no limit to the number of banks or the
number of questions within them. All question components can be used with a
bank.

Randomization

Randomization is the process of, and rules governing, the selection of question
from the question banks to create an assessment article.

Tracking

The ability to track a users progress through a course. This is done through
SCORM or Tin-Can/xAPI and enables LMS's to gain information about the user
during a course.

Bookmarking

The ability to reload a course and take the user back to where they finished their
last session.

Technology platform

The set of technologies (technology stack) that the Adapt Framework and the
Adapt Authoring Tool are built upon.

JS/CSS/HTML Adapt's core foundation technology.

JSON All of Adapt's data is stored in JSON format. JSON is formatted in a key and value
pairing.

Node JS Node JS enables us to run an offline server on our development machines. Node
powers our Grunt, Handlebars and Less compiling. Node JS is also the
technology powering the Adapt Authoring Tool.

MongoDB MongoDB is the NoSQL database that stores our document based JSON data for

the Adapt Authoring Tool.

Bespoke / overrides

For developers we have a bespoke folder that enables us to do overrides /
customisations of functionality without having to change the core code directly.

Libraries We use a variety of open source code libraries at the heart of Adapts core.

Backbone Backbone is a front-end library that enables us to separate our views and from
our data. It comes with a built in events system and router to enable us to
change pages.

Events The Adapt framework is built upon an event system that enables our

modules/classes to be separated and modular. One module should not talk to
another module. Instead they trigger events that other modules can choose to
listen to.

Page 10




Adapt Framework Concept

Data and view

By having a clear distinction between our models and views we're able to

separation structure and maintain a growing/large framework.

Underscore Underscore is the utility belt for Backbone. It enables Backbone to manipulate
objects like Backbone.Model and Backbone.Collection. Underscore also comes
with some handy methods that help deal with arrays/objects.

Utility belt We use underscore when iterating over arrays or objects with _.each or with
Backbone.Collection.each()

Modernizr Modernizr is a conditional loader and adds browser feature detection

Conditional loading

In the Adapt framework we conditionally load scripts based upon which browser
the user is loading the course from. Modernizr comes with a built in yepNope
conditional loader.

Browser feature
detection

Modernizr attaches classes to the HTML tag based upon browser features. This
can be used when styling or adding features and polyfills for different browsers.

Less

We use LESS as our CSS pre-processor. Less enables us to inherit and store
variables that can be used across Adapt.

CSS pre-processing

CSS pre-processing enables developers to easily and quickly style courses, whilst
inheriting styles, passing variables and nesting.

Handlebars Handlebars is our core templating engine. We precompile our templates
through a Grunt process to enable fast load times.

Templating We use Handlebars to load our views HTML. This enables Adapt to be dynamic
and act as a one page web app.

Grunt Grunt is a node based JavaScript task runner. In Adapt, this is used for
automation.

Automation We use Grunt to automate our tasks. We use minification, handlebars and less
compiling and requirelS optimisation dependency loading.

Minification Running $ grunt build - a developer is able to minify all files including CSS and JS
files. Minification means removing formatting, which is important for code-
readability but not for machine processing, and thus making the code more
efficient.

Mocha Mocha is a Behaviour Driven Development framework that enables us to run
unit tests across our code.

Unit tests Unit tests enable us to test single methods or functions in our code to make sure

that produce the correct output. This is an important measure in order to
achieve high quality code.

Karma (not on
diagram yet)

We use Karma as a spec runner that runs our unit tests in a variety of browsers.
This also integrates with Travis-ci and runs test through a headless browser
known as PhathomJS.

Bower

Bower is a front-end package manager. We wrap Bower in an Adapt-cli
(command line interface) that enables developers to quickly download and
install Adapt and plugins.

Plugin-registry

We have our own plugin registry that enables developers to register their
plugins (components, extensions, menus or themes). Once registered these

Page 11




Adapt Framework Concept

plugins are available through the adapt-cli by running commands like $ adapt
install adapt-contrib-text

Require JS RequirelS is an AMD (asynchronous module definition) module loader. It
enables us a greater sense of modularity and dependency loading.
Modularity Adapt is built upon a modular approach where modules shouldn't talk to each

other and instead trigger events. This enables us to have a plugin architecture
and smaller modular files.

Dependencies

The RequirelS optimizer loads all of the Adapt dependencies in the correct order
so we don't have dependency collisions or unnecessary script tags in the
index.html file.

jQuery

jQuery is a cross-browser compatible DOM manipulation library. It enables us to
write less code whilst working across all the currently supported browsers

DOM manipulation

DOM manipulation allows us to move or affect DOM elements in the browser.

Page 12




