Adapt Authoring Ul for adding / editing components

Mike and I started tackling the component editing issue in anger today. The main issue we are addressing is how we add and edit components.

Workflow
The flow across key pages should be as follows:

Illustration Comments
In summary, this means there are three key
g |Daqe 57‘rudure edifi g Screen screens we need to design. These are:
/? /Q, _d,a.' imfﬂ’e"i = e B [G } _______ * The page structure editing screen
2) Select Compan eut 71\7/” 7 * The component selection dialogue
* The component editing screen
3) Select placement /Sice (ovapanent Selection
lf) h hefher 4 d,‘alogme We discussed the flow and agreed on two
00Se. w er 1o items:
ediv -‘4’{”'5“ Awday 0f * Step 4 would enable the user to choose

fefury -}o Straclure eoln‘?f@

— | —

5) Er/rr da-lat m-}o o Mponeut

whether to go into data entry or skip this
step for now and carry on with editing
the structure

) FI 4+ vew : Mavidatory Leelols onls * The detailed view for step 5 would show
\7 -F' (7 / (Uw 1onent edikn 4 mandatory fields by default. There would
6) view all data ,-n,,m.; {fel s / aﬂfiam[/ [K be a vehicle to reveal the additional entry
Screen, fields.

\ :l) enter ¢confent / make changes

&) save cancel

Page structure editing screen
The starting point for these designs is the page structure editing screen:

Relevant screenshot Comments
The page structure editing screen is largely
Page sdtor in keeping with the designs in the design
review project (which is missing some
o o detail).
This is the first article
- 8 In each block, there is an ‘Add component’
p— Tou N) y . button, Wth.h is not visible in the screenshot
i{;mmmpm) in:aurnewcomponem) to the left. Given that there is one of these
buttons per block, the user determines the

location of where to add the component by
choosing the button.

Article 1
This is the first article

Block 1
Test

[Text] w
{Your new component}

Add block

Add article

The component selection dialogue
The component selection dialogue is the interim screen, which covers steps 2-4 in the flow above.

Relevant screenshot

Comments

- Origin admin Logout

Page editor

Global Settings

Project settings

Please select a component

Text S
Name: adapt-contrib-text, Version: 0.2.0

Matching Question

. Name: adapt-contrib-matching, Version: 0.2.0
. Accordion

Name: adapt-contrib-accordion, Version: 0.2.0

Slider

Narrative

Graphical Multiple Choice Question
. Name: adapt-contrib-gmca, Version: 0.2.0

Multiple Choice Question

. Name: adapt-contrib-mcq, Version: 0.2.0

Hot Graphic

eft [Full-width Right

Block 1
Test

Add component
Add block

Add article

The component selection dialogue should be
implemented as a modal dialogue and cover
the following:

* Provide a list of all the components
installed in the authoring tool, which the
user has access to

* The user can cancel out of the dialogue at
any time. This would mean no
component will be added.

* The user selects a component

* The user selects whether this is to be
added as a full width component or as a
single width component. If the latter, the
user chooses whether the component
displays on the left or right of the block.

* The user can then select whether to:

o Add the component and return to
the page structure editing screen.
(If so, default or dummy values
are added to the mandatory
component data fields)

o Add the component and go
straight into the content entry /
editing screen.

The look & feel shown here is not in keeping
with the clean design and will need to be
reviewed and incorporated into the design
review project.

Illustration

Comments

Add comvnanmt

Search (__ &)

[Text

—

F?lide r

f Grraphical MR L

E—_— =

|)
[Graphic X g
[Navcative i

|

Vi

——

fsifion :

— —

[Lett |

[Fudt-width | (Rgnt]

[Cancell] ~ [fdd and ccharn | (Ao aud et

See comments on screenshot above

The component editing screen
The component editing screen is where the user inputs data for the content and configuration of the component.

Relevant screenshots Comments
LRSS | Component editing happens in a full page,
Editing graphic component - Wthh behaves llke a dialogue. There are

several actions available on this page (not
represented in screenshot) including:

T re * Save / cancel

Display title Display title

Body text i PreVieW
o (B 7 : 2 * C(Close and return to page structure

General

1]
1]
{1}
iii
i
%
i

The screenshot shows the editing page. The
main content area shows an accordion to
Component ropertes separate out types of properties - in this
example the General accordion ‘tab’ is open.

Extensions

Separation via accordion control

The separation of General, component
properties and extensions is derived from
the technical structure of the schema files. I
believe this is not suitable for separation
from a usability point of view. [also believe
that the accordion vehicle is not correct and
that users would be better served with a
long scrolling page and maybe an index to in
the sidebar to skip to items.

Design actions:

* Add available action buttons to sidebar

* Change accordion control in to long
scrollable page

* Initial view to show mandatory fields
only

* Add index to sections in scrolling page on
sidebar

Editing graphic component -

admin

Logout

General

Component properties

root

_graphic

alt

large

medium

small

title

Extensions

The screenshot shows the editing page. The
main content area shows an accordion to
separate out types of properties - in this
example, the Properties accordion ‘tab’ is
open.

User friendliness of input fields

The data input fields are read in from the
component schemas and rendered by the
authoring tool. This example shows that the
authoring tool uses the variable names from
the schema rather than descriptive labels.
Using schema data alone, also creates an
issue in terms of being able to translate the
labels into other languages. Finally, for ease
of use, we also ought to add context sensitive
help for each data field in order to make the
authoring tool as easily usable as possible.

Design actions:

* Add language-string display labels
(Ability to change authoring too interface
language)

* Add context sensitive help files

* Change input fields to better represent
input data type (e.g. longer input boxes,
textareas with formatting, file pickers)

Editing graphic component -

Save

eS8 | In this example, the Extensions accordion
‘tab’ is open.

No additional comments

Component properties

Extensions

root
_pageLevelProgress
_isEnabled

false ~

Research into use of schemas for input rendering

In order to provide the correct design input, we have done a review of the data available to the authoring tool. This has included the following:

Review of the existing schema files

There is a hierarchy of schema files, which the editor uses to render the editing interface:

Illustration

Comment

{
"type":"object",
"$schema”: "http://json-schema.org/draft-04/schema”,
"id": "http://jsonschema.net",
"$ref": "http://localhost/system/tenantObject.schema"”,
"properties”:{
"_type": {
"type":"string",

basicContent.schema

This schema is the highest in the inheritance structure. It applies to all
components. Most importantly, this means that all components have the
following data entry fields as far as the authoring tool is concerned (highlighted
in red):

* title

* displayTitle

"id": "http://jsonschema.net/_type"
},
citle

"type":"
"required":false,
"default": ""

},

string",

* body

To illustrate this...

displayTitle JERKi
"type":"string",
"required":false,
"default": ""

},

in the authoring tool... and the output.
R Imagery helps to tell a story

Display title
Body text For content that needs a visual effect we have a graphic

component. To optimise this for various devices, this component

I
I
1]
iii
ifi
%
B

4 o Fomasv B [

? swaps out images based upon your screen size. Giving the user
E the best experience possible according to their device's spec.

oo N

"type":"string",
"default" : ""

"type":"object",

"$schema”: "http://json-schema.org/draft-04/schema”,
"id": "http://jsonschema.net",

"$ref": "http://localhost/system/basicContent.schema"”,
"properties”:{

_classes™": {
"type":"string",
"default":""

}s
"_parentId": {

"type":
"required":true

objectid",

¥

" _courseId": {

"type":"objectid",

Content.schema

This schema inherits from the basicContent.schema, meaning it builds upon it
and carries the values the former has already defined as well as the ones listed in
the code to the left.

This schema does not add any fields that should be input into the authoring tool
by the end user. The authoring tool handles the assignment of these data values
internally.

"required"”:true,
"editorOnly": true

"type":"object",

"$schema”: "http://json-schema.org/draft-04/schema”,
"id": "http://jsonschema.net",

"$ref": "http://localhost/system/content.schema",
"properties": {

" _componentType": {
"type": "objectid",
"required": true,
"ref": "componenttype",
"editorOnly": true

¥
"_component": {
"type": "string",

"required": true,

"default": ""

s

" layout": {
"type": "string"

s

"_extensions": {
"type":"object"

s

"properties" : {
"type": "object"

}

Model.schema

This schema builds upon the two previous ones and defines further internal
variables, which are not seen or modified in the authoring tool by the end user.

For reference, some properties carry an underscore prefix. These properties are
values, which are language independent and would not change regardless of
authoring tool language chosen.

"type":"object",
"$schema”: "http://json-schema.org/draft-04/schema”,

An example component schema

In order to get to rendering the input fields for a component, each component

"id":
"$ref": "http://localhost/plugins/content/component/model.schema",

"http://jsonschema.net",

"properties”:{
"_graphic"R
"type":"object",
"required”:true,
"properties”:{
"alt" e
"type":"string",
"required":false

},
g

"type":"string",

"required":true

),
"nediun’ G

"type":"string",

has a schema, too, which builds upon the previous three schemas. The example
here is a Graphic component, which is relatively simple. All properties are
explained below for reference:

Adapt-contrib-graphic - properties.schema

This schema is responsible for the following data input rendering interface:

Component properties

ot

-

<]
_graphic

alt

large

v ¥

medium

"required":true

small

),
"sna11" o

"type":"string",
"required":true
},
BT «

"type":"string",
"required":false

title

e

Data fields and their meanings:

* _graphic - this is essentially a group of data values, which contains the
following attibutes:
alt - the alternative text for the graphic
large - the relative URL to the large graphic file (desktop display). This
would ideally be input via a file chooser dialog
medium - the relative URL to the medium size graphic file (tablet display).
small - the relative URL to the small graphic file (smartphone display).
title - I am unsure where this is used to be honest. It could be a duplication.

And an example of this looks like so:

Example JSON data...

and the output.

{
" id":vc-70",
"_parentId":"b-35",

_type":"component”,

"_component”:"graphic”,
"_classes":"",
"_layout":"right",

"title":"Imagery helps to
tell a story",

"body":"For content that
needs a visual effect we have a
graphic component. To optimise this
for various devices, this component
swaps out images based upon your
screen size. Giving the user the
best experience possible according
to their device's spec.”,

"instruction":"",
"graphic": {
"alt": "alt text",
"title": "title text",

"large":
"course/en/images/origami-menu-
two.jpg",

"medium" :
"course/en/images/origami-menu-
two.jpg",

"small":
"course/en/images/origami-menu-
two.jpg"

s
" _pagelevelProgress": {
" _isEnabled": true

}

3,

For content that needs a visual effect we have a graphic
component. To optimise this for various devices, this component
swaps out images based upon your screen size. Giving the user
the best experience possible according to their device's spec.

f Imagery helps to tell a story

Requirements for data entry / editing
We have defined some basic data input Ul requirements:
* Ability to display a descriptive language-string label other than the variable name
* Ability to display a language-string context sensitive help popup per data item
* Ability to display mandatory fields only by default
* Ability to display all data entry fields
* Ability to group related data entry fields in the editor
* Ability to apply basic formatting to relevant data types
* Ability to call up a file-chooser dialogue for assets
* Ability to limit arrays of items to sensible values / what the code can handle via the schema
* Ability to render a data input form field best suited to the data type

Data types and rendering characteristics

Data type Rendering characteristics

Single line unformatted text string (short)

Single line unformatted text string (long)

Single line formatted text string (short)

Single line formatted text string (long)

Multi line unformatted text string

Multi line formatted text string

Boolean

Integer

Decimal

CSv

Single select from list

Relative link URL

Fully qualified link URL

Relative asset URL

(Array)

Appendix A — Adapt core bundle definition

The core bundle is defined as follows. This identifies the scope of the plug-ins we need to consider for the initial design task

Type Repository / plug-in Schemas or datafiles Status
Core adapt_framework course/config.json Seems to be a data file. Cannot find schema.
course/<lang>/course.json Seems to be a data file. Cannot find schema.
course/<lang>/course.json Seems to be a data file. Cannot find schema.
course/<lang>/articles.json Seems to be a data file. Cannot find schema.
course/<lang>/blocks.json Seems to be a data file. Cannot find schema.
Components adapt-contrib-accordion properties.schema Schema in place. Where and how do we express limitations of the array of items?
adapt-contrib-blank ? Missing or is this deliberately omitted?
adapt-contrib-gmcq properties.schema Schema in place. [Issues: array limitations, Shouldn’t there be a different data type for asset
URLs?]
adapt-contrib-graphic properties.schema Schema in place. Shouldn’t there be a different data type for asset URLs?
adapt-contrib-hotgraphic properties.schema Schema in place.
adapt-contrib-matching properties.schema
adapt-contrib-mcq properties.schema
adapt-contrib-media properties.schema
adapt-contrib-narrative properties.schema
adapt-contrib-slider properties.schema
adapt-contrib-text properties.schema
adapt-contrib-textInput properties.schema
Extensions adapt-contrib-assessment example.json Seems to be a data file. Cannot find schema.
adapt-contrib-pageLevelProgress example.json Seems to be a data file. Cannot find schema.
adapt-contrib-resources example.json Seems to be a data file. Cannot find schema.
adapt-contrib-spoor ? Missing altogether. Incorporated into config.json?
adapt-contrib-trickle example.json Seems to be a data file. Cannot find schema.
adapt-contrib-tutor ? Missing altogether.
Theme adapt-contrib-vanilla ? Missing altogether.
Menu adapt-contrib-boxMenu course/<lang>/contentObjects.json Seems to be a data file. Cannot find schema.
Developer adapt-cli n/a n/a

tools

